A lipid droplet protein of Nannochloropsis with functions partially analogous to plant oleosins.
نویسندگان
چکیده
As our understanding of the dynamics of lipid droplets (LDs) in animal, plant, and fungal cells is rapidly evolving, still little is known about the formation and turnover of these organelles in microalgae. Yet with the growing importance of algal feedstock for the production of biofuels and high-value lipids, there is a need to understand the mechanisms of LD dynamics in microalgae. Thus, we investigated the proteins associated with LDs of the emerging heterokont model alga Nannochloropsis sp. and discovered an abundant hydrophobic lipid droplet surface protein (LDSP) with unique primary sequence but structural similarities to other LD proteins. LDSP abundance in Nannochloropsis cells closely tracked the amount of triacylglycerols during conditions of oil accumulation and degradation. Functional characterization of LDSP in an Arabidopsis (Arabidopsis thaliana) OLEOSIN1-deficient mutant allowed a separation of its physical and structural properties in its interaction with LDs from its physiological or biochemical activities. Although LDSP presence in Arabidopsis predictably affected LD size, it could not reverse the physiological impact of OLEOSIN deficiency on triacylglycerol hydrolysis during germination.
منابع مشابه
Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants.
Plant cells contain subcellular lipid droplets with a triacylglycerol matrix enclosed by a layer of phospholipids and the small structural protein oleosin. Oleosins possess a conserved central hydrophobic hairpin of approximately 72 residues penetrating into the lipid droplet matrix and amphipathic amino- and carboxyl (C)-terminal peptides lying on the phospholipid surface. Bioinformatics of 1,...
متن کاملSubcellular Lipid Droplets in Vanilla Leaf Epidermis and Avocado Mesocarp Are Coated with Oleosins of Distinct Phylogenic Lineages.
Subcellular lipid droplets (LDs) in diverse plant cells and species are coated with stabilizing oleosins of at least five phylogenic lineages and perform different functions. We examined two types of inadequately studied LDs for coated oleosins and their characteristics. The epidermis but not mesophyll of leaves of vanilla (Vanilla planifolia) and most other Asparagales species contained solita...
متن کاملSubcellular Lipid Droplets in Vanilla Leaf Epidermis and Avocado Mesocarp Are Coated with Oleosins of Distinct Phylogenic Lineages1[OPEN]
Subcellular lipid droplets (LDs) in diverse plant cells and species are coated with stabilizing oleosins of at least five phylogenic lineages and perform different functions. We examined two types of inadequately studied LDs for coated oleosins and their characteristics. The epidermis but not mesophyll of leaves of vanilla (Vanilla planifolia) and most other Asparagales species contained solita...
متن کاملOleosin of subcellular lipid droplets evolved in green algae.
In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleo...
متن کاملEvolution of Oleosin in Land Plants
Oleosins form a steric barrier surface on lipid droplets in cytoplasm, preventing them from contacting and coalescing with adjacent droplets. Oleosin genes have been detected in numerous plant species. However, the presence of oleosin genes in the most basally diverging lineage of land plants, liverworts, has not been reported previously. Thus we explored whether liverworts have an oleosin gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 158 4 شماره
صفحات -
تاریخ انتشار 2012